Copied to
clipboard

G = C42.415D4order 128 = 27

48th non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.415D4, C42.166C23, C4⋊Q8.23C4, (C2×C4).12Q16, C4.36(C2×Q16), (C2×C4).29SD16, C4.54(C2×SD16), C4⋊C8.204C22, C42.107(C2×C4), C4.6Q1620C2, C4.7(C4.D4), (C22×C4).238D4, C4⋊Q8.239C22, (C22×Q8).10C4, C4.17(Q8⋊C4), C4.105(C8.C22), C4⋊M4(2).15C2, (C2×C42).210C22, C23.183(C22⋊C4), C42.12C4.25C2, C22.22(Q8⋊C4), C2.12(C23.38D4), (C2×C4⋊Q8).4C2, (C2×Q8).30(C2×C4), (C2×C4).1237(C2×D4), C2.14(C2×Q8⋊C4), C2.19(C2×C4.D4), (C2×C4).160(C22×C4), (C22×C4).232(C2×C4), (C2×C4).247(C22⋊C4), C22.224(C2×C22⋊C4), SmallGroup(128,280)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.415D4
C1C2C22C2×C4C42C2×C42C2×C4⋊Q8 — C42.415D4
C1C22C2×C4 — C42.415D4
C1C22C2×C42 — C42.415D4
C1C22C22C42 — C42.415D4

Generators and relations for C42.415D4
 G = < a,b,c,d | a4=b4=1, c4=a2b2, d2=b, ab=ba, cac-1=a-1, ad=da, cbc-1=b-1, bd=db, dcd-1=b-1c3 >

Subgroups: 236 in 120 conjugacy classes, 56 normal (26 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×Q8, C2×Q8, C4×C8, C22⋊C8, C4⋊C8, C4⋊C8, C2×C42, C2×C4⋊C4, C4⋊Q8, C4⋊Q8, C2×M4(2), C22×Q8, C4.6Q16, C4⋊M4(2), C42.12C4, C2×C4⋊Q8, C42.415D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, SD16, Q16, C22×C4, C2×D4, C4.D4, Q8⋊C4, C2×C22⋊C4, C2×SD16, C2×Q16, C8.C22, C2×C4.D4, C2×Q8⋊C4, C23.38D4, C42.415D4

Smallest permutation representation of C42.415D4
On 64 points
Generators in S64
(1 33 62 50)(2 51 63 34)(3 35 64 52)(4 53 57 36)(5 37 58 54)(6 55 59 38)(7 39 60 56)(8 49 61 40)(9 42 32 18)(10 19 25 43)(11 44 26 20)(12 21 27 45)(13 46 28 22)(14 23 29 47)(15 48 30 24)(16 17 31 41)
(1 52 58 39)(2 40 59 53)(3 54 60 33)(4 34 61 55)(5 56 62 35)(6 36 63 49)(7 50 64 37)(8 38 57 51)(9 24 28 44)(10 45 29 17)(11 18 30 46)(12 47 31 19)(13 20 32 48)(14 41 25 21)(15 22 26 42)(16 43 27 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 48 52 13 58 20 39 32)(2 16 40 43 59 27 53 23)(3 46 54 11 60 18 33 30)(4 14 34 41 61 25 55 21)(5 44 56 9 62 24 35 28)(6 12 36 47 63 31 49 19)(7 42 50 15 64 22 37 26)(8 10 38 45 57 29 51 17)

G:=sub<Sym(64)| (1,33,62,50)(2,51,63,34)(3,35,64,52)(4,53,57,36)(5,37,58,54)(6,55,59,38)(7,39,60,56)(8,49,61,40)(9,42,32,18)(10,19,25,43)(11,44,26,20)(12,21,27,45)(13,46,28,22)(14,23,29,47)(15,48,30,24)(16,17,31,41), (1,52,58,39)(2,40,59,53)(3,54,60,33)(4,34,61,55)(5,56,62,35)(6,36,63,49)(7,50,64,37)(8,38,57,51)(9,24,28,44)(10,45,29,17)(11,18,30,46)(12,47,31,19)(13,20,32,48)(14,41,25,21)(15,22,26,42)(16,43,27,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,48,52,13,58,20,39,32)(2,16,40,43,59,27,53,23)(3,46,54,11,60,18,33,30)(4,14,34,41,61,25,55,21)(5,44,56,9,62,24,35,28)(6,12,36,47,63,31,49,19)(7,42,50,15,64,22,37,26)(8,10,38,45,57,29,51,17)>;

G:=Group( (1,33,62,50)(2,51,63,34)(3,35,64,52)(4,53,57,36)(5,37,58,54)(6,55,59,38)(7,39,60,56)(8,49,61,40)(9,42,32,18)(10,19,25,43)(11,44,26,20)(12,21,27,45)(13,46,28,22)(14,23,29,47)(15,48,30,24)(16,17,31,41), (1,52,58,39)(2,40,59,53)(3,54,60,33)(4,34,61,55)(5,56,62,35)(6,36,63,49)(7,50,64,37)(8,38,57,51)(9,24,28,44)(10,45,29,17)(11,18,30,46)(12,47,31,19)(13,20,32,48)(14,41,25,21)(15,22,26,42)(16,43,27,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,48,52,13,58,20,39,32)(2,16,40,43,59,27,53,23)(3,46,54,11,60,18,33,30)(4,14,34,41,61,25,55,21)(5,44,56,9,62,24,35,28)(6,12,36,47,63,31,49,19)(7,42,50,15,64,22,37,26)(8,10,38,45,57,29,51,17) );

G=PermutationGroup([[(1,33,62,50),(2,51,63,34),(3,35,64,52),(4,53,57,36),(5,37,58,54),(6,55,59,38),(7,39,60,56),(8,49,61,40),(9,42,32,18),(10,19,25,43),(11,44,26,20),(12,21,27,45),(13,46,28,22),(14,23,29,47),(15,48,30,24),(16,17,31,41)], [(1,52,58,39),(2,40,59,53),(3,54,60,33),(4,34,61,55),(5,56,62,35),(6,36,63,49),(7,50,64,37),(8,38,57,51),(9,24,28,44),(10,45,29,17),(11,18,30,46),(12,47,31,19),(13,20,32,48),(14,41,25,21),(15,22,26,42),(16,43,27,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,48,52,13,58,20,39,32),(2,16,40,43,59,27,53,23),(3,46,54,11,60,18,33,30),(4,14,34,41,61,25,55,21),(5,44,56,9,62,24,35,28),(6,12,36,47,63,31,49,19),(7,42,50,15,64,22,37,26),(8,10,38,45,57,29,51,17)]])

32 conjugacy classes

class 1 2A2B2C2D2E4A···4H4I4J4K4L4M4N8A···8H8I8J8K8L
order1222224···44444448···88888
size1111222···24488884···48888

32 irreducible representations

dim1111111222244
type+++++++-+-
imageC1C2C2C2C2C4C4D4D4SD16Q16C4.D4C8.C22
kernelC42.415D4C4.6Q16C4⋊M4(2)C42.12C4C2×C4⋊Q8C4⋊Q8C22×Q8C42C22×C4C2×C4C2×C4C4C4
# reps1411144224422

Matrix representation of C42.415D4 in GL6(𝔽17)

1620000
1610000
00161500
001100
00014115
00714116
,
1150000
1160000
001000
000100
000010
000001
,
1070000
570000
0001303
00041014
000500
001116213
,
1160000
1400000
0000150
00014215
008000
0084143

G:=sub<GL(6,GF(17))| [16,16,0,0,0,0,2,1,0,0,0,0,0,0,16,1,0,7,0,0,15,1,14,14,0,0,0,0,1,1,0,0,0,0,15,16],[1,1,0,0,0,0,15,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[10,5,0,0,0,0,7,7,0,0,0,0,0,0,0,0,0,11,0,0,13,4,5,16,0,0,0,10,0,2,0,0,3,14,0,13],[11,14,0,0,0,0,6,0,0,0,0,0,0,0,0,0,8,8,0,0,0,14,0,4,0,0,15,2,0,14,0,0,0,15,0,3] >;

C42.415D4 in GAP, Magma, Sage, TeX

C_4^2._{415}D_4
% in TeX

G:=Group("C4^2.415D4");
// GroupNames label

G:=SmallGroup(128,280);
// by ID

G=gap.SmallGroup(128,280);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,456,758,1123,1018,248,1971,242]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2*b^2,d^2=b,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

׿
×
𝔽